Remote Sensing

Bathymetric and topographic LiDAR

(532, 1064, 1550nm)

VNIR/SWIR hyperspectral


Hi-res spectral

Thermal IR


(active, passive, InSAR, L-,P-,Ka, Ku)




... probing the environment using the least intrusive and
         cost-efficient state-of-the-art airborne technologies ...




(wind, turbulence, air temperature, humidity,

eddy fluxes, ...)


(fine, ultra-fine,

sampling, ..)

Trace Gases

(CO2, CH4, NH3, ...)





Third Party Sensors 

Unrestricted research flight operations Australia-wide - day and night - over land and water - 25m to 7km altitude

Not-for-Profit Independent Approved Research Institute

Airborne Mapping for Bushfire Recovery

- 2019/20 Cudlee Creek and Kangaroo Island Fires -

First results from Kangaroo Island

near Western River

RGB-coloured Lidar pointcloud

3m-wide crosssection along

yellow line

trees on elevation profile

tree height above ground

CIR-image of burnt and un-burnt land

red: un-burnt;   black: burnt (or water)

Burnt-down house

 CIR: Colour InfraRed

derived from  hyperspectral measurements (128 bands)

3m-wide crosssection (see line above)

through Lidar pointcloud coloured with CIR.

Note the partially burnt trees.

Near Gumeracha

See more results

and imagery here

For mapping areas

on Kangaroo Island

click here

For mapping areas

in the Adelaide Hills

click here

Data and


can be

downloaded here
AH and KI

In late Dec 2019 and Jan 2020, large bushfires devastated areas

in the Adelaide Hills and on Kangaroo Island in South Australia.

To assist in the recovery process, we are mapping specific areas using

high resolution LiDAR, VNIR hyperspectral scanning and high resolution RGB imaging.

There are now also two 3D-interactive views of the Lidar pointcloud - click the image - and make sure you set POTREE to "High Quality".

Zoom in to individual tree size.

To our amazement, we even found two eagles

soaring over the forest. And yes, these are eagles, the lager one has a wingspan of 1.48m.

Check it out yourself in the POTREE animation !

The Fly-Through was generated from the Lidar pointcloud coloured by the RGB-imagery. All data is from the flight - no ground-based data. Download the data from here.

Most data from these flights is available (at no cost) to interested parties.

To download the data and images, click  Adelaide_Hills or Kangaroo_Island

For further details and also if you would like to propose specific areas for mapping,


​​​This work is substantially supported by the          

Interactive 3D
views of the Lidar data -


"Removing" the rainforest on Cape York reveals a landscape

of hills and creeks that no human eye has ever seen.

Joint study by ARA-Airborne Research Australia and the IRRS - Iron Range Research Station - funded by the MAXIM Foundation. 

     Nothing but trees....                    ...nesting mounds                                 Nothing but trees...         ....old diggings      from

          (aerial photo)                             of scrub fowls                                         (aerial photo)                   a mini-goldrush                                                                        invisible below.                                                                                invisible below.

Using our high-resolution airborne Lidar,

we were able to find out what's hidden under the very dense canopy of the rainforest.

See the whole landscape with the "Trees/noTrees" sliders:

Read more about the project here...

This project has now lead to a new facility available at ARA for science applications

- a State-of-the-Art Terrestrial Laser Scanner (TLS) Riegl VZ400i.

  • High laser pulse repetition rate of up to 1.2 MHz

  • High speed data acquisition up to 500,000 measurements/sec

  • Wide field of view, 100°x360°

  • Range up to 800 m, accuracy 5 mm

The TLS can be used as a stand-alone sensor

or make a powerful combination with the existing ARA airborne Lidars (ALS).

Some examples can be seen here.

The MAXIM Foundation is a Not-For-Profit organsation based in Cairns.

Ultrafine Particles and Coal-Fired Power Stations

A decade of airborne regional-scale measurements of aerosol size distributions

and meteorological parameters allows to identify major sources.

UFP influence rainfall distribution via aerosol-cloud interaction.

Joint study by ARA/Flinders University and the Karlsruhe Institute of Technology (KIT).

Inner Mongolia, China


Eastern Australia

Mangrove Dieback along the coast of the Gulf of Carpentaria

In Aug/Sep 2017, we mapped the mangrove dieback

that is currently occurring in many areas

along the coastline of the Gulf of Carpentaria

in Far North Queensland and the Northern Territory

Sensors used:                   Riegl Q680i-S LiDAR

                                         Canon DSLR EOS 5D MkII

                                     modified Canon DSLR EOS 6D (for ndvi)

Roper River, NT

Use the slider to see the mangroves before and after the dieback

Google Earth image 2005
Airborne Photomosaic Aug 2017



hi-res airborne LiDAR

10m wide


1m wide


hi-res airborne LiDAR

The data from the example above can be downloaded from these links:

Google Earth kmz-files

GeoTIFF- & laz-files

The team

More than 6,000km of flightlines were mapped over 3 weeks yielding >3,000sqkm of covered area.

The project and data capture is described in detail in this document:



The document also contains links to the full data set.

All data are freely available for download.

A collaborative project with funding from: Charles-Darwin University, TropWater/JCU, Queensland Herbarium and ARA; supported by R. Lucas, U of Wales Aberystwyth, UK and Riegl Lasermesstechnik, Austria.

All data will also become available on the TERN/AusCover portal.

LiDAR bathymetry of Ningaloo Reef, NW-Western Australia

We recently flew our topographic and bathymetric Lidars over Ningaloo Reef. We were very fortunate with the weather and water conditions, so we were able to "see" into the water all the way down to more than 13m depth.

The topographic Lidar (a Riegl Q680i-S) was mapping the water surface, giving us an image of the waves crashing into the reef edge, while the bathymetric Lidar (a Riegl VQ820G) gave us a very detailed image of the reef structure below.

Use the slider to uncover the underwater reef structure !

Results from a collaborative study with Ryan Lowe and Jeff Hansen, Univerity of Western Australia 

If you would like to see how this area looks from the cockpit of the research aircraft, go to our Facebook page .


LiDAR 3D-Visualisation


We just started to use the potree software to visualise some of our LiDAR data.

Two examples are already available:

Rendered by TERN/AusCover

using data collected by ARA

Rendered by ARA

using data collected by ARA



Combining the most modern in-situ and remote sensing technology with the most flexible, affordable and versatile aerial platforms, we carry out our own research and make our toolkit available to the Australian and international science and R&D community.


Our approach utilises the best features of both worlds of research aviation,

- the flexibility of UAV-like technology and instrumentation, and

- the versatility and unrestricted operations of small, modern manned aircraft,

giving us the capability to cost-efficiently and rapidly integrate sensors into our airborne platforms and deploy them anywhere in Australia (and even overseas).


We are an independent certified Not-For-Profit Approved Research Institute (ARI) with strong links into the science networks nationally and internationally.


We have a long-standing solid track record of involvement and leadership in a large number of Australian and international science-based projects where the use of airborne technologies were essential. 




Most of our work is done in collaboration or partnerships with Universities, public entities or Industry.


As an ARI, our policy will continue to keep our work as transparent and traceable as possible manifested through the use of open source software, open and free discussions with collaborators and other specialists in the field about methodologies and procedures, and by making the data collected during science-based projects available to the relevant communities through open data repositories and archives - whenever possible and controlled by appropriate procedures.


We have a policy of sharing our airborne technology, data and expertise - in particular with students, scientists and small groups and businesses such as ours.


To facilitate airborne data capture and/or trials in the context of student projects, small scientific projects and projects in collaboration with other Not-For-Profit entities, we maintain a register of desired locations and types of data on the basis of which we may then propose to combine them to make them feasible.

As our aircraft are based on advanced gliding technology, they have the capability to glide for long distances in the event of an engine failure allowing us to operate safely far out over water and over unlandable areas.


Our airborne systems do not require any airport infrastructure for their operation which makes deployment very flexible.


As we operate two nearly identical airborne platforms, there is the ability to fly a large number of sensors in tandem, or if required, identical sensors simultaneously at different altitudes.

The environmental impact of our research platforms in terms of


- carbon dioxide footprint

- exhaust pollution

-noise pollution

- visual impact


is far smaller than that of any other airborne research platform in operation today.


This has enabled us to operate over the most environmentally sensitive areas, such as flying at low altitudes over the protected coral reefs of the Great Barrier Reef or in the wilderness areas of Southern Tasmania.




airborne and ground-based



Hyper-spectral scanner SPECIM EAGLE II

(optimised ARA version, VNIR 400-1000nm, up to 488 bands, 1024 pixels/line)


Hyper-spectral scanner SPECIM HAWK

(optimised ARA version, SWIR 970-2500nm, up to 254 bands, 320 pixels/line)


Tri-spectral imager MosaicMill CANON 6D

(red, green, nir - mainly for ndvi - 21 MPix)


Tri-spectral scanner ARA/AWI TSLS

(red, green, nir - mainly for ndvi - 2048 cross-track pixels, 50lps)


Single Band line scanner RUNNER

( single band btw 390 and 1050nm - 2048 cross-track pixels, >1KH lps )




Passive microwave L-Band radiometry

(for soil moisture, sea surface / river salinity)


Passive microwave P-, Ka- Ku-Band radiometry

(for soil moisture, sea surface / river salinity)


Active L-Band microwave SAR, InSAR

(for high-res soil moisture, salinity, vegetation)



METpod, BATprobe and Z-Probe

(Air Temperature, Humidity, 3D-wind vector, Air Pressure)



(for airborne flux measurements of heat, water vapour and CO2)




Meteorological trace gas, particle and aerosol sensors


Quantum-cascade laser gas analysers

(for methane, ammonia, nitrous oxide in ppb-range)




Other more specialised instrumentation

(radon sampler, trace gas sampler, etc]




Full waveform scanning LiDAR RIEGL Q560

(up to 240kHz pulse rate, operating at 1550nm)


Full waveform scanning LiDAR RIEGL Q680i-S

(up to 400kHz pulse rate, operating at 1064nm)


Bathymetric scanning LiDAR RIEGL VQ820G

(operating at 532nm)



Thermal Infrared imager

(FLIR A615 & S60)





Hi-res still and video cameras

(Canon 1D, 5D; GoPro, other)



Several high-precision IMU/GPS systems

Novatel SPAN with LITEF LCI, Novatel SPAN with LITEF ISA

3 x OXTS RT4003 L1/L2/dual antenna MEMS-based
(3D-position and inertial speed;
attitude angles, accelerations, rates)


Laser Altimeter

(Riegl LD90LR)


BATprobe and Z-Probe

(Air Angles, dynamic pressure)


Comprehensive on-board infrastructure

(PCs, Ethernet/wireless throughout, Internet connection,
flight tracker, external science power - uninterrupted
switching from ground- to aircraft power, etc.)



GPS Basestation


Spectrometer ASD


10m high mobile Flux Tower



Airborne Research Australia

ABN 60 604 313 484



Hackett Foundation Adelaide

Maxim Foundation, Lockhart River

Australian Research Council

Sir Ross and Sir Keith Smith Fund

Joyce and Don Schultz

Flinders University

For information:

Director:      Andrew J. McGrath

Chief Scientist:   Jorg M. Hacker


ARA is a member of:


European Facility for

Airborne Research



Network of Airborne Environmental Research Scientists

... probing the environment using the least intrusive
                         and most cost-efficient technologies ...

© ARA 2020